k means
-
Faiss IndexIVF 深度解析 助你从零构建高效向量检索系统
Faiss IndexIVF 索引:从入门到精通 你好,欢迎来到 Faiss 索引的世界!如果你正在构建一个需要快速相似性搜索的系统,例如推荐系统、图像搜索或文本检索,那么 Faiss 绝对是你的得力助手。今天,我们将深入探讨 Fai...
-
如何精准识别数据集中异常值的探讨与实践
在数据分析的洪流中,异常值恰似那闪烁的星星,虽不常见,却通常位于信息的尖端。那么,如何在庞大的数据集中精准、有效地识别这些异常值呢? 异常值的定义并不简单。根据应用场景的不同,异常值可以是远离其他数据点的数值,也可以是某种不合逻辑的记...
-
Faiss 中 PQ (乘积量化) 算法的实现细节深度解析
Faiss 中 PQ (乘积量化) 算法的实现细节深度解析 嘿,各位 Faiss 的老朋友们,咱们又见面啦!这次咱们不聊别的,就来好好啃一啃 Faiss 中一个非常重要的算法——PQ (乘积量化,Product Quantizatio...
-
深入浅出NMF非负矩阵分解:数学原理、优化算法与Python实战
深入浅出NMF非负矩阵分解:数学原理、优化算法与Python实战 你是不是经常遇到数据降维、特征提取、主题模型这些概念?今天,咱们就来聊聊一个在这些领域都大放异彩的算法——NMF(Non-negative Matrix Factori...
-
k-NN算法在文本聚类中的应用:参数选择与调优
你有没有想过,海量的文本数据(比如新闻、博客、评论)是如何被自动归类的? 这背后,有一种叫做“文本聚类”的技术在默默发挥作用。而k-NN(k-Nearest Neighbors,k近邻)算法,作为一种简单又有效的机器学习算法,在文本聚类中...
-
GNMF算法加速:LSH在处理大规模图像数据集中的应用
GNMF算法加速:LSH在处理大规模图像数据集中的应用 大家好啊!今天咱们聊聊一个听起来有点“高大上”,但实际上跟图像处理息息相关的话题——GNMF(图正则化非负矩阵分解)算法,以及如何用局部敏感哈希(LSH)来给它“提提速”。 ...
-
MinHash、SimHash 之外的 LSH 变种:原理、应用场景与优缺点解析
MinHash、SimHash 之外的 LSH 变种:原理、应用场景与优缺点解析 话说回来,咱们平时聊到近似最近邻搜索(Approximate Nearest Neighbor Search,ANN),肯定会想到局部敏感哈希(Loca...
-
K值选择方法对文本聚类结果的影响及实战案例分析
文本聚类是自然语言处理中的一项重要任务,它可以将大量无标签的文本数据按照内容相似度自动划分成不同的簇,从而帮助我们发现文本中的潜在主题和结构。K-means算法是其中一种常用的聚类算法,但K值的选择对聚类结果影响很大。今天咱们就来聊聊,不...
-
如何选择合适的异常值检测算法?
在数据分析与机器学习领域, 异常值 (Outliers)是指那些偏离其他观测结果的数据点。这些数据往往会对模型产生负面影响,因此正确地识别并处理这些异样数据信息显得尤为重要。然而,在面对众多的 异常值检测算法 时,该如何选择最合适的一种呢...
-
关键词提取式文章摘要:算法选择与优化策略
作为一名AI算法工程师,我经常被问到如何根据用户提供的关键词,自动生成既准确又易读的文章摘要。今天,我就来跟大家聊聊关键词提取式文章摘要背后的算法,以及如何根据实际需求进行选择和优化。 什么是关键词提取式摘要? 简单来说,关键词提...
-
利用AI洞察北京市民出行习惯,助力城市交通规划
利用AI洞察北京市民出行习惯,助力城市交通规划 随着人工智能(AI)技术的飞速发展,它在城市规划领域的应用也日益广泛。本文将探讨如何利用AI技术分析北京市居民的出行习惯,并为城市交通规划提供数据支持,旨在优化交通资源配置,提升城市运行...
